评述与展望

树木生物技术育种研究进展  

卢泳全
浙江农林大学林业与生物技术学院, 临安, 311300
作者    通讯作者
基因组学与生物技术, 2018 年, 第 7 卷, 第 1 篇   
收稿日期: 2018年07月09日    接受日期: 2018年08月25日    发表日期: 2018年08月31日
© 2018 BioPublisher 生命科学中文期刊出版平台
这是一篇采用Creative Commons Attribution License进行授权的开放取阅论文。只要对本原作有恰当的引用,版权所有人允许和同意第三方无条件的使用与传播。
推荐引用:

卢泳全, 2018, 树木生物技术育种研究进展, 基因组学与生物技术(online), 7(1): 1-11 (doi: 10.5376/gb.cn.2018.07.0001)

摘要

过去几十年间,林业生物技术研究取得了重要的进展,分离和鉴定了大量与树木重要性状相关的基因,这些研究成果极大地促进了树木生物技术育种的研究与应用。本研究重点综述了树木遗传转化过程中的受体系统,转化的主要方法以及树木转基因工程的主要研究方向,着重介绍了抗病虫基因工程、抗除草剂、抗逆性基因工程、材性基因工程以及生殖发育基因工程,并对树木转基因育种与分子标记辅助育种研究中亟待解决的问题及发展方向进行了讨论。

关键词
树木;生物技术育种; 转基因育种;分子标记辅助育种; 基因工程; 遗传转化

介绍

众所周知,许多木本植物从种子出苗到初次开花,需要数年、甚至数十年才能开花结果,生长周期长严重限制了木本植物的遗传育种的研究进程。以杂交育种为代表的传统树木遗传育种方法,对生长周期长的木本开展遗传改良几乎无能为力。因此,缩短木本植物生长周期或者加快其繁殖周期成为树木育种工作的重要任务之一。

 

生物技术育种(Bio-tech Breeding)是基于现代分子生物学理论和生物技术手段发展起来的离体组织培养技术、转基因技术、分子标记辅助育种技术进行遗传改良的育种方式。迄今为止,已有百余种树木建立了组织培养体系,如松属、杉属、桉属、杨属的许多种以及泡桐、银杏、枣、茶、棕榈、咖啡和椰子等,其中杨树、松树和北美黄杉等试管苗已经大面积应用于林业生产中;在过去的几十年间,随着林业生物技术研究取得重要的进展,一批性状优良的转基因树木也相继进入了田间试验(Harfouche et al., 2011)。

 

2006年杨树基因组的测序完成(Tuskan et al., 2006),标志着多年生木本植物分子生物学研究的“一个全新科学时代的开端”,为树木生物技术育种的发展带来新的希望,精细定位与克隆控制树木重要经济性状、抗逆、抗病性状主效基因成为可能并可在天然群体中同源克隆等位基因,从而促进树木遗传育种的发展(Jansson and Douglas, 2007)。

 

从树木基因组学和生物技术育种技术的发展方向来看,转基因技术必将对林木遗传育种带来革命性的突破。但是,木本植物离体可培养的种类少,缺乏高效的遗传转化平台,以及与树木抗性、材质相关的功能基因有限,必将大大限制树木生物技术育种的发展。因此,建立树木生物技术育种的遗传资源平台、分子技术平台和生物信息平台,显得十分迫切。

 

本研究根据树木生物技术育种的现状,就加快树木生物技术育种进行了思考,提出来未来树木生物技术育种的发展方向。

 

1林木转基因受体系统

迄今已有组织培养体系的林木已达百余种,如松属、杉属、桉属、杨属的许多种以及泡桐、银杏、枣、茶、棕榈、咖啡和椰子等,其中杨树、辐射松和北美黄杉等试管苗已经大面积应用于生产中(侯炳柱等, 2010)。杨树基因组测序获得成功后,随后葡萄、桉树等相继完成。然而,由于林木作为研究材料的局限性,如难以在实验室操作及具有较长的生长周期等,大大阻碍了林木分子生物学的研究。随着不断的研究积累,科学家们发现拟南芥在林木分子生物学研究中的重要作用,林木的许多功能基因可以在拟南芥中进行同源追踪和功能验证。即便是林木所具有的独特现象如次生木质部的发育和休眠现象也能从拟南芥上找到依据,因此,针对木本植物生长周期长的局限,拟南芥成为为林木分子生物学研究的辅助手段,甚至可以直接作为林木发育分子机理研究的实验模型。

 

目前,已经有科学家在拟南芥中研究维管组织和木质部的形成机理,并根据此研究从杨树中克隆出了同源基因(Moyle, 2002);在拟南芥中研究木纤维细胞形成和木质化的木纤维细胞(Zhong and Ye, 2004; Le-Yadun et al., 2005);科学家们在拟南芥中发现了至少10个编码纤维素合成酶催化亚基的基因,其中,有些基因与初生细胞壁的形成有关,而另一些基因则与木质部次生壁的形成有关(Doblin et al., 2002);利用拟南芥中已经研究的花发育基因来转导林木(Weigel and Nilsson, 1995; Rottmann et al., 2000);研究休眠相关的因子(Bagnall et al., 1995)等。

 

随着杨树功能基因组研究的开展,如何利用拟南芥功能基因组研究的成果和研究模型的优势加快林木分子生物学研究,是林木遗传育种研究的重要课题。拟南芥作为模式植物具有易于进行实验操作的优点,这恰恰是林木作为实验材料最大的弱点。所以,我们应该利用已经在拟南芥中研究的功能基因,特别是与林木的特异性相关的基因,然后在杨树等林木模式植物中进行同源克隆,找出这些基因在在杨树中的表达模式,为杨树中的基因功能研究提供简单便捷的思路;然后,利用基于杨树EST序列或基因组序列的基因芯片检测杨树木质部等发育过程的基因表达,筛选出林木独特发育过程所涉及的基因,再利用生物信息学手段搜索拟南芥的同源基因序列,结合基因敲除手段获得相应的拟南芥突变体,为尽快研究该同源基因对植物的影响提供实验材料,最终为在杨树上开展相关功能研究提供重要的思路。

 

最近几年,瑞典的Umeå植物科学中心(UPSC)联合运用拟南芥和杨树模型,在林木分子生物学研究中获得许多重要进展,他们已经在杨树基因表达谱检测和杨树功能基因组研究等方面做了大量工作,取得了—批重要成果。借鉴林业发达国家的一些经验,特别是合理地运用拟南芥模型,建立林木与拟南芥的联合研究体系,是开展林木分子生物学研究的重要思路(金群英等, 2009)。

 

2林木转基因方法

基因工程不仅为林木带来新的基因型,而且加快了科学家们研究林木基因的表达。目前,应用于林木转基因工程的转化方法主要是以下4种方法:农杆菌介导法、花粉管通道法、基因枪法和原生质体瞬时转化法。

 

其中农杆菌介导法是目前使用最多、机制最清楚、技术最成熟以及成功实例最多的方法,通过农杆菌介导的基因转移系统,一些外来的基因已经被成功地转入木本植物中(Fillatti et al., 1987; Klopfenstein et al., 1993; Wenck et al., 1999; Walter and Grace, 2000)。

 

80年代初,我国学者周光宇成功地将外源海岛棉DNA导入陆地棉,培育出抗枯萎病的栽培品种,正式在我国创立了花粉管通道法(周光宇等, 1988)。与其它方法相比,花粉管通道法有许多优点,尤其是其转化不需要经过组织培养,这为那些上不具备高效稳定的组培再生体系的木本植物的转基因研究提供了便捷的途径。但是,该技术也存在一定的缺点,如只能局限于开花时间应用、影响因素较多、技术体系尚不完善等,尽管有一些未解决的问题,花粉管通道法仍是值得研究利用的转化系统(张广平和邹学校, 2007)。

 

McCown等(1991)首次利用基因枪法来进行树木的遗传转化,他用放电式基因枪对银白杨×大齿杨进行了遗传转化,并获得了转基因植株。目前,已经有多个树种通过基因枪法获得了转基因植株,如蓝桉(Eucalyptus globules) (Serrano and Rochang, 1996)、挪威云杉(Picea abies) (Bishop-Hurley et al., 2001)和桉树杂种(Eucalyptus grandis×E. urophylla) (Sartoretto et al., 2002)等。

 

Lin等(2014)在Nature上发表了林木的原生质体瞬时表达体系。该方法首先要获得高效的原生质体分离效率,研究者以经典的TEAMP方法为基础进行改进,使正在分化木质部的茎分离获得原生质体的效率大大提高,可以达到2.5 × 107 /g。然后就可以用含有外源基因的质粒对其进行转化。该方法从分离原生质体到后续的转化用时不超过1 h,而且同时可以做10个样品,转化效率高达96%,是木本植物功能基因组研究的快捷高效的方法,为木本植物功能基因组的研究提供了一个新途径。

 

3林木转基因研究方向

Yamamoto等(1988)从黑松(Pinus thunbergil)中克隆了首个来自林木的基因——核酮糖二磷酸羧化酶基因。美国于1998年通过了抗病毒转基因番木瓜(Carica papaya)商品化的决议(Gonsalves, 1998),我国于2006年底批准抗环斑病(PRSV)转基因番木瓜获得商业化种植(http://www.stee.agri.gov.cn/biosafety/spxx/)。据不完全统计,全球范围内已对近百个树种进行了遗传转化研究。其中杨树(Populus spp.)、番木瓜(Caricaceae)、松树(Pinus spp.)、柳(Salix spp.)、核桃(Juglus)、苹果(Malus)、樱桃(Prunus)、香樟(Camphora)、悬铃木(Plantnus)、桉树(Eucalyptus spp.)和云杉(Picea spp.)等转基因植株已进入田间试验阶段或已批准商品化(刘海涛等, 2009)。转基因技术克服了杂交育种中物种间不亲和的现象。目前,林木中的转基因主要包括抗虫害基因、抗除草剂基因、抗逆性基因、与木材相关的基因以及与生育相关的基因等。而基因来源可以是植物,也可以是低级微生物,病毒甚至可以来源于动物。

 

3.1抗病虫基因工程

在全世界范围内,有超过210个田间试验站种植转基因林木,绝大多数为杨树、松树、枫香树和桉树,仅中国就种植有300~500 hm2约140万株抗虫的转基因杨树(陆钊华和徐建民, 2005)。在木本植物上应用较多的抗虫基因可分为6类:苏云金杆菌杀虫晶体蛋白(Bt)基因、昆虫蛋白酶抑制剂基因、豇豆胰蛋白酶抑制剂基因(cpti)、系统肽基因、昆虫特异性神经蝎毒素基因(AaIT)和植物凝集素基因(lectin) (刘海涛等, 2009)。

 

Shin等(1994)利用发根农杆菌成功将Bt基因导入到了落叶松植株中。许多科学家已经在杨树中对蛋白酶抑制基因进行了大量研究,发现其能够增加植株的防虫功能,科学家们将番茄的Pin2基因转到杨树中,发现该植株对鳞翅目幼虫有一定的抗性(Klopfenstein et al., 1993; Leplé et al., 1995; Heuchelin et al., 1997)。还有来自于土壤微生物Bacillus thuringiensis (Bt)的抗虫基因cry1AcryIIIA,经过35S启动子在杨树中启动表达后,杨树表现出对鞘翅目幼虫具有一定的杀虫活性(Cornu et al., 1996)。我国郝贵霞等(2000)成功地将cpti基因转入毛白杨(Populus tomentosa),并进入大田检查阶段。

 

从林木上克隆的抗病基因主要有2类:抗病毒基因和抗菌基因。目前使用的抗病毒基因只有杨树花叶病毒外壳蛋白(PMV CP)基因、洋李痘病毒的外壳蛋白(PPV)基因和黄瓜花叶病毒外壳蛋白(CMV CP)基因等少数几种(陆钊华和徐建民, 2005)。Scorza等(1994)将番木瓜(Caria papaya L.)环斑病毒(PRV)外壳蛋白基因导入欧洲李中。Liang等(2001)将来自小麦的草酸氧化酶基因导入杨树,提高了转基因植株的抗真菌能力。Kovalyova等(2007)从樟子松中分离获得了长度为252 bp的防御素基因PsDeF1,其具有广谱、高效的抗微生物活性。

 

3.2抗除草剂基因工程

Fillatti等(1987)首先将草甘膦抗性基因通过根癌农杆菌导入到杨树NC5339无性系,所获得转基因植株获得了除草剂抗性。科学家们在从豌豆以及大豆中克隆出rbcS之后,也开始研究该基因在杨树中的转基因表达(Riemenschneider and Haissig, 1991),发现转rbcS基因的杨树对除草剂耐受性显著提高(Donahue et al., 1994; Karnosky et al., 1997)。林木中抗除草剂基因还有aroA基因,除此之外,还有一些从细菌中克隆的bar基因(Devillard, 1992)以及从拟南芥中克隆的crs1-1基因已经被导入到林木中(Ahuja, 2001)。

 

3.3抗逆基因工程

植物对干旱、盐碱、抗冻以及抗涝等的反应是复杂的多元应答系统,其生理过程受多基因控制。近年来,人们对逆境胁迫下植物的抗氧化系统进行了深入的研究,已确定该系统由一些能清除活性氧的酶系统和抗氧化物组成,如超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)和抗坏血酸(AsA)等。

 

3.3.1抗旱及抗盐碱

在干旱胁迫下林木自身的调控基因和功能基因均被诱导表达。干旱胁迫应答基因编码蛋白——LEA蛋白是一类重要的脱水素,具有高度亲水性。能够保护细胞免受水分胁迫的伤害。Chang等(2010)从遭受水分胁迫的火炬松根的cDNA文库中分离出JpLP5,该基因可能编码细胞壁增厚蛋白,防止植株脱水萎蔫。欧洲水青冈(Fagus sylvatica)ABA响应基因FsDhnl编码晚期胚胎富集蛋白LEA,在欧洲水青冈种子干燥的条件下,LEA蛋白受诱导特异表达,表明FsDhnl是一个干旱诱导基因(Jiménez et al., 2008)。杨传平等(2001)通过根癌农杆菌介导法将外源基因Bet-A导入小黑杨(Populus simonii×P. nigra)并获得转基因植株。樊军锋等(2002)用双价耐盐基因mtlD/gut2DL转化84K杨,获得3株抗NaCI的转化植株。邹维华等(2004)用反义磷脂酶D7 (Anti-PLD7)基因转化美洲黑杨G2,大大提高了G2植株的耐盐性。

 

3.3.2抗冻

植物响应适应低温胁迫有依赖ABA和非依赖ABA两种途径。Kayal等(2006)从冈尼桉(Eucalyptus gunnii)中分离出EguCBFlaEguCBFlb基因,发现其编码的CRT/DRE结合因子对低温胁迫有响应。Puhakainen等(2004)从白桦中克隆出Bplti36基因,发现在低温处理下Bplti36转录水平显著上升。白桦脂肪酸生物合成基因BpFAD3BpFAD7BpFAD8,参与了亚油酸(18: 2)转变为α-亚麻酸(18: 3)的过程:低温诱导了BpFAD3BpFAD8的表达,但却抑制BpFAD7的表达,使α-亚麻酸(18: 3)含量增高,脂肪酸不饱和性增加,从而提高白桦的抗寒能力(Martz et al., 2006)。Foyer等(1998)用拟南芥的Fe-SOD基因转化杨树,发现转基因杨树不仅叶绿体中Fe-SOD活性高于对照5~8倍,而且杨树的抗冻性也明显提高。

 

3.3.3抗涝

Ramandeep等(2001)根据已报道的VHb氨基酸序列合成DNA探针杂交筛选Vitreoscilla的基因库,得到了含有vgb基因的1.4 kb DNA片段;KhoslaBailey (1988)也用类似的方法克隆了vgb基因,他们还测定了vgb基因的核酸序列,结果与之前所报道的VHb氨基酸序列具有较高的一致性。Mao等(2003)将vhb导入了矮牵牛,发现vhb的表达明显促进了淹水和缺氧条件下矮牵牛的生长。此外,Haggman等(2003)将vgb基因成功地导入了欧洲山杨×美洲山杨(Populus tremula×P. tremutoides)。

 

3.3.4其它

杨树中分离到的PtdMTPl以及白桦中分离的MRP4等基因对于阐明树木抗环境污染的机制有重要意义。Blaudez等(2003)从杨树中获得PtdMTPl基因,该基因能够帮助植物解除Cd和Zn胁迫,并且对抑制Co、Mn和Ni等重金属的富集有一定效果。Keinanen等(2007)从白桦中得到的耐重金属基因MRP4在根部和芽部的表达量显著上升,参与消除重金属Cu对生物的毒性。Gallardo等(1999)将松树胞质谷胱苷肽合成酶基因通过农杆菌介导法转入杂种杨(P. tremula×P. alba)株系INRA7171-B4并获得表达。

 

3.4材性改良基因工程

林木基因工程的一个重要目标是,改变木质素的成分但不影响树木结构的稳定性及其抗菌性能,并且可以萃取出更多的木质素。采用基因工程手段调控与材质相关的基因的表达,可以有效地改变木质素的组成并且降低木质素含量,培育出新型能源品种,可以从根本处降低造纸成本,并减少环境污染。

 

科学家们分别从毛果杨(Populus trichocarpa)、美洲山杨(Populus tremuioides)以及火炬松(Pinus taeda)中克隆出了与木质素生物合成途径关键酶相关的基因PtCOMLF5H4CLCCRCCoAOMTCAD等 (Doorsselaere et al., 1995; Sibout et al., 2002; Li et al., 2005; Bhuiya and Liu, 2009)。Ko等(2006)从欧洲山杨×毛白杨杂交杨(Populus tremula×Populus tomentosa)中克隆到一个锌指因子基因PtaHB1,并且证实了该基因调控维管组织分化。SamugaJoshi(2002)在美洲山杨中发现参与植物纤维素合成的基因PtrCSLD2JohnsonDouglas(2007)发现MONOPTEROS(MP)/AUXIN响应因子PoptrMP1PoptrMP2均与维管组织的发育有关,其中PoptrMP1主要在毛果杨次生木质部表达,PoptrMP1的过量表达将导致其作用的下游靶基因转录量提高2~4倍。Sonoda等(2009)发现赤桉(Eucalyptus camaldulensis)转录因子HD-Zip classⅡ的EcHB1基因与植株的纤维形成有关。近来也有研究表明MYB转录因子PtrMYB3PtrMVB20及NAC转录因子PtrWND2BPtrWND6B与纤维素和木质素的生物合成有关,并与木材形成有关(McCarthy et al., 2010; Zhong et al., 2010)。

 

3.5生殖发育基因工程

林木生长周期比较长,并且生殖发育滞后,而这正是果树以及林木育种所需要解决的问题。基因工程的另一个应用即是调控林木生殖发育。

 

目前已从美洲山杨(Populus tremuloides)、辐射松(Pinus radiata)、巨桉(Eucalyptus grandis)、黑云杉(P. Mariana)、挪威云杉(Picea abies)和苹果(Malus domestica)中分离出一些与花形成和发育相关的基因——MYBPTMPMADS2PTLFPRFLLNEEDLYFT2,为通过基因工程技术来进行林木的开花调控,缩短其开花周期,获得提早开花或花期不育的转基因新品种打下良好基础(Mellway et al., 2009)。美洲山杨的花发育基因PTM3/4能在转基因烟草、拟南芥以及美洲山杨中参与季节性的开花调节(Cseke et al., 2005)。DornelasRodriguez(2006)运用Northern杂交和原位杂交技术研究并发现雪松(Cedrela fissilis) FLOR/CAULA/LEAFY同源基因CfLFY主要集中在花分生组织和花芽中表达,并且参与雪松的开花调控。各种与花调控相关的MADS-box基因已经在光皮桦(Betula pendula)中被鉴定出来,并且在烟草和光皮桦中进行过表达(Elo et al., 2001)。在光皮桦(Elo et al. 2007)以及苹果(Flachowsky et al. 2007)中发现FRUITFULL (FUL)同源的BpMADS4基因的过表达能够使植物的花期大大提前(Flachowsky et al., 2009)。

 

3.6其它

在杨树、松树和桉树的相关研究中,通过转录组和蛋白质谱也鉴定出许多与次生生长相关的基因,这些基因在早晚材形成(Le Provost et al., 2003; Egertsdotter et al., 2004)、幼龄材与成熟材发育(Le Provost et al., 2003)、秋叶衰老(Bhalerao et al., 2003; Andersson et al., 2004)、木质部分化(Lorenz and Dean, 2002)以及不定根发生(Kohler et al., 2003)等过程中有显著的表达变化。拟南芥内源葡聚糖酶GELl基因在杨树中的过量表达能显著增加树高、叶面积、树干直径和纤维素/半纤维素含量(Shani et al., 2004; Park et al., 2004)。

 

4存在问题及展望

转基因技术在林木基因组研究中取得了巨大的成功,近年来,很多转基因植物都进入到了田间试验阶段。转基因技术的关键是解决常规育种方法解决不了的问题,创造新品种,但转基因技术并非万能的,在转基因高速发展的同时,其向环境释放后的生态安全问题也越来越受到人们的备受关注。目前的大部分研究都是集中在林木有商业价值性状的转化和鉴定上面,我们需要进一步对生态和物种的安全性进行分析,如利用基因工程的手段来研究林木的不育基因,或在林木中研究基因删除技术以及其它的技术来解决转基因的安全性问题。

 

林木基因工程在发展过程除了安全性问题之外,还有许多其他问题制约着其发展。首先是目前还没有很好的基因转移平台,并且组织培养系统的效率非常低下,这几乎是所有木本植物基因工程研究所面临的问题;其次是缺乏从林木自身克隆而得的目的基因,很多优良基因并未得到有效地利用;最后,外源基因导入后是否能够长期、稳定地在林木中表达尚不清楚等。所以,我们还需要进行长期的摸索来建立比较稳定的再生系统和高效率的转化体系。

 

转基因林木的安全性评估是一个长期而复杂的过程。在多年生的林木中,不稳定的外源基因带来的风险比一年生植物的更高。我们必需进行长期的持续跟踪研究,才能获得较全面的数据,以评估其大面积释放的安全性。

 

林木基因工程的应用对林木的育种带来飞速的发展,能够用来保护原始森林以及濒危物种,以避免外来物种的入侵以及人为的破坏。我们应在做好细致的安全评估的情况下,改良遗传转化方法,构建高效的转化体系。在不久的将来,通过基因工程手段改造的树木新品种必将在净化大气、改良土壤、生态恢复及提供优质木材等方面发挥巨大作用。

 

Reference

Ahuja M.R., 2001, Recent advances in molecular genetics of forest trees, Euphytica, 121(2): 173-195

https://doi.org/10.1023/A:1012226319449

 

Andersson A., Keskitalo J., Sjödin A., Bhalerao R., Sterky F., Wissel K., Tandre K., Aspeborg H., Moyle R., Ohmiya Y., Bhalerao R., Brunner A., Gustafsson P., Karlsson J., Lundeberg J., Nilsson O., Sandberg G., Strauss S., Sundberg B., Uhlen M., Jansson S., and Nilsson P., 2004, A transcriptional timetable of autumn senescence, Genome Biol, 5(4): R24.1-R24.13

 

Bagnall D.J., King R.W., Whitelam G.C., Boylan M.T., Wagner D., and Qqail P.H., 1995, Flowering responses to altered expression of phytochrome in mutants and transgenic lines of Arabidopsis thaliana (L) Heynh, Plant Physiol, 108(4): 1495-1503

https://doi.org/10.1104/pp.108.4.1495
PMid:7659750 PMCid:PMC157529

 

Bhalerao R., Keskitalo J., Sterky F., Erlandsson R., Björkbacka H., Birve S.J., Karlsson J., Gardeström P., Gustafsson P., Lundeberg J., and Jansson S., 2003, Gene expression in autumn leaves, Plant Physio, 131(2): 430-442

https://doi.org/10.1104/pp.012732
PMid:12586868 PMCid:PMC166820

 

Bhuiya M.W., and Liu C.J., 2009, A cost-effective colorimetric assay for phenolic o -methyltransferases and characterization of caffeate 3- o -methyltransferases from populus trichocarpa, Analytical Biochemistry, 384(1): 151-158

https://doi.org/10.1016/j.ab.2008.09.031
PMid:18926792

 

Bishop-Hurley S.L., Zabkiewicz R.J., Grace L., Gardner R.C., Wagner A., and Walter C., 2001, Conifer genetic engineering: transgenic, pinus radiata, (d. don) and, picea abies, (karst) plants are resistant to the herbicide buster, Plant Cell Reports, 20(3): 235-243

https://doi.org/10.1007/s002990100317

 

Blaudez D., Kohler A., Martin F., Sanders D., and Chalot M., 2003, Poplar metal tolerance protein 1 confers zinc tolerance and is an oligomeric vacuolar zinc transporter with an essential leucine zipper motif, Plant Cell, 15(12): 2911-2928

https://doi.org/10.1105/tpc.017541
PMid:14630973 PMCid:PMC282827

 

Chang S., Puryear J.D., Dias M.A.D.L., Funkhouser E.A., Newton R.J., and Cairney J., 2010, Gene expression under water deficit in Loblolly pine (Pinus taeda): isolation and characterization of cDNA clones, Physiologia Plantarum, 97(1): 139-148

https://doi.org/10.1034/j.1399-3054.1996.970121.x
https://doi.org/10.1111/j.1399-3054.1996.tb00490.x

 

Cornu D., Leple J.C., Bonade-Botino M., Ross A., Augustin S., Delplanque A., Jouanin L., Pilate G., 1996, Expression of a proteinase inhibitor and a Bacillus thurigiensisδ-endotoxin in transgenic poplars, In: Ahuja M.R., Boerjan W., and Neale D.B.(eds.), Somatic Cell Genetics and Molecular Genetics of Trees, Springer Netherlands, Germany, pp.131-136

https://doi.org/10.1007/978-94-011-3983-0_18

 

Cseke L.J., Cseke S.B., Ravinder N., Taylor L.C., Shankar A., Sen B., Thakur R., Karnosky D.F., Podila G.K., 2005, SEP-class genes in Populus tremuloides and their likely role in reproductive survival of poplar trees, Gene, 358(10): 1-16

https://doi.org/10.1016/j.gene.2005.05.035
PMid:16040208

 

Devillard C., 1992, Genetic transformation of aspen (Populus tremula×P. alba) by Agrobacterium rhizogenes and regeneration of plants tolerant to herbicide, CR Acad. Sci. Paris, t. 314, Series III: 291-298

 

Doblin M.S., Kurek I., Jacob-Wilk D., and Delmer D.P., 2002, Cellulose biosynthesis in plants: From genes to rosettes, Plant and Cell Physiol, 43(12): l407-l420

https://doi.org/10.1093/pcp/pcf164

 

Donahue R.A., Davis T.D., Michler C.H., Riemenschneider D.E., Carter D.R., Marquardt P.E., Sankhla N., Sankhla D., Haissig D.E., and Isebrands J.G., 1994, Growth, Photosynthesis, and herbicide tolerance of genetically modified hybrid poplar, Canadian Journal of Forest Research, 24:(12): 2377-2383

https://doi.org/10.1139/x94-306

 

Doorsselaere J. V., Baucher M., Feuillet C., Boudet A.M., Montagu V.M., and Inzé D., 1995, Isolation of cinnamyl alcohol dehydrogenase cDNAs from two important economic species: alfalfa and poplar, Demonstration of a high homology of the gene within angiosperms, Plant Physiology & Biochemistry, 33(1): 105-109

 

Dornelas M.C., and Rodriguez A.P., 2006, The tropical cedar tree (Cedrela fissilis Vell. Meliaceae) homolog of the Arabidopsis LEAFY gene is expressed in reproductive tissues and can complement Arabidopsis leafy mutants, Planta, 223(2): 306-314

https://doi.org/10.1007/s00425-005-0086-y
PMid:16133209

 

Egertsdotter U., van Zyl L.M., Mackay J., Peter G., Kirst M., Clark C., Whetten R., and Sederoff R., 2004, Gene expression during formation of earlywood and latewood in loblolly pine: Expression profiles of 350 genes, Plant Biology, 6(6): 654-663

https://doi.org/10.1055/s-2004-830383
PMid:15570469

 

Elo A., Lemmetyinen J., Novak A., Keinonen K., Porali I., Hassinen M., and Sopanen T., 2007, BpMADS4 has a central role in inflorescence initiation in silver birch (Betula pendula), Physiologia Plantarum, 131(1): 149-158

https://doi.org/10.1111/j.1399-3054.2007.00947.x
PMid:18251933

 

Elo A., Lemmetyinen J., Turunen M.L., Tikka L., and Sopanen T., 2001, Three MADS-box genes similar to APETALA and FRUITFULL from solver birch (Betula pendula), Physiologia Plantarum, 112: 95-103

https://doi.org/10.1034/j.1399-3054.2001.1120113.x
PMid:11319020

 

Fan J.F., Peng X.X., Han Y.F., Li L., and Li J.R., 2002, Study on Transformation of mtlD/gutD divalent genes to Populus deltoids×P. cathayana, Linye Kexue (Scientia Silvea Sinicea), 38(6): 30-36 (樊军锋, 彭学贤, 韩一凡, 李玲, 李嘉瑞, 2002, mt1D/gutD双价基因转化美洲黒杨×青杨的研究, 林业科学, 38(6): 30-36

 

Fillatti J.J., Selmer J., McCown B., Haissig B., and Comai L., 1987, Agrobacterium-mediated transformation and regeneration in Populus, Molecular & General Genetics Mgg, 206(2): 192-199

https://doi.org/10.1007/BF00333574

 

Flachowsky H., Hanke M.V., Peil A., Strauss S.H., and Fladung M., 2009, A review on transgenic approaches to accelerate breeding of woody plants, Plant Breeding 128(3): 217-226

https://doi.org/10.1111/j.1439-0523.2008.01591.x

 

Flachowsky H., Peil A., Sopanen T., Elo A., and Hanke V., 2007, Overexpression of BpMADS4 from silver birch (Betula pendula Roth.) induces early flowering in apple (Malus×domestica Borkh.), Plant Breed, 126(2): 137-145

https://doi.org/10.1111/j.1439-0523.2007.01344.x

 

Foyer C.H., 1998, Over-expression of Fe-SOD in transformed poplar modifies the regulation of photo synthesis at low C02 partial pressures or following exposure to the prooxidant hebicide methyl viologen, Plant Phiysiol, 117(2): 565-574

https://doi.org/10.1104/pp.117.2.565

PMid:9625709 PMCid:PMC34976

 

Gallardo F., Fu J.M., Cantón F.R., García-Gutiérrez A., Cánovas F.M., and Kirby E.G.,1999, Expression of a conifer glutamine synthetase gene in transgenic poplar, Planta, 210(1): 19-26

https://doi.org/10.1007/s004250050649
PMid:10592028

 

Gonsalves D., 1998, Control of Papaya ringspot virus in papya: A case study, Annual Review of Phytopathology, 36(1): 415-437

https://doi.org/10.1146/annurev.phyto.36.1.415
PMid:15012507

 

Haggman H., Frey A.D., Ryynanen L., Aronen T., Julkunen-Tiitto R., Tiimonen H., Pihakaski-Matmsbach K., Jokipii S., Chen X.W., and Kallio P.T., 2003, Expression of Vitreoscilla haemoglobin in hybrid aspen (Populus tremula×P. tremutoides), Plant Biotechnology Journal, 1(4): 287-300

https://doi.org/10.1046/j.1467-7652.2003.00027.x
PMid:17163905

 

Hao G.X., Zhu Z., and Zhu Z.T., 2000, Get the transgenic CpTI gene Populus tomentosa, Linye Kexue (Forest science), 36(1): 116-119 (郝贵霞, 朱帧, 朱之悌, 2000, 转CpTI基因毛白杨的获得, 林业科学, 36(1): 116-119

 

Harfouche A., Meilan R., and Altman A. 2011, Tree genetic engineering and applications to sustainable forestry and biomass production, Trends Biotechnol, 29(1): 9-17

https://doi.org/10.1016/j.tibtech.2010.09.003
PMid:20970211

 

Heuchelin S.A., Jouanin L., Klopfenstein N.B., and McNabb H.S., 1997, Potential of proteinase inhibitor for enhanced resistance to Populus arthopod and pathogen pests, In: Chun Y.W., Kim M.S., and Ahuja M.R., (eds.), Micropropagation, genetic engineering and molecular biology of Populus, USDA, Forest Service, Rocky Mountain Research Station, Fort Collins, USA, pp.173-177

 

Hou B.Z., Li T.H., Feng X.M., Li X.F., 2010, The review about the application of biotechnology in forests breeding, ZHONGGUO BAOZHUANG KEJI BOLAN, (30): 616-616 (侯炳柱, 李同华, 冯晓明, 李雪峰, 2010, 浅谈生物技术在林木育种中的应用, 中国包装科技博览, (30): 616-616)

 

Jansson S., and Douglas., 2007, Populus: A model system for plant biology, Annual Review of Plant Biology, 58(1): 435-458

https://doi.org/10.1146/annurev.arplant.58.032806.103956
PMid:17280524

 

Jiménez J.A., Alonso-Ramirez A., and Nicolás C., 2008, Two cDNA clones (FsDhnl and Fsclo1) up-regulated by ABA are involved in drought responses in Fagus sylvatica L. seeds, Journal of Plant Physiology, 165(17): 1798-1807.

https://doi.org/10.1016/j.jplph.2007.11.013
PMid:18343532

 

Jin Q.Y., Xiao X.C., Peng H.Z., Hua X.Q., Sun X.X., 2009, Application of Arabidopsis thaliana on researches of forest molecular biology, Zhejiang Linye Keji (Journal Of Zhejiang Forest Science and technology), 29(1): 58-64 (金群英, 肖新超, 彭华正, 华锡奇, 孙晓霞, 2009, 拟南芥在林木分子生物学研究中的应用, 浙江林业科技, 29(1): 58-64

 

Johnson L.A., and Douglas C.J., 2007, Populus trichocarpa MONOPTEROS/AUXIN REsPONSE FACT0R5 (ARF5) genes: Comparative structure, sub-functionalization, and Populus-Arabidopsis microsynteny, Canadian Journal of Botany, 85(11): 1058-1070

https://doi.org/10.1139/B07-065

 

Karnosky D.E., Podila G.K., Shin D., and Riemenschneider D.E., 1997, Differential expression of aroA gene in transgenic poplar: Influence of promoter and ozone stress. In: Klopfenstein N.B., Chun Y.W., Kim M.-S., and Ahuja M.R. (eds.), Micropropagation, genetic engineering and molecular biology of Populus, USDA, Forest Service, Rocky Mountain Research Station, Fort Collins, USA, pp.70-73

 

Kayal W.E., Navarro M., Marque G., Keller G., Marque C., and Teulieres C., 2006, Expression profile of CBF-like transcriptional factor genes from Eucalyptus in response to cold, Journal of Experimental Botany, 57(10): 2455-2469

https://doi.org/10.1093/jxb/erl019
PMid:16816002

 

Keinanen S.L., Hassinen V.H., Karenlampi S.O., and Tervahauta A.I., 2007, Isolation of genes up-regulated by copper in a copper-tolerant birch(Betula pendula)clone, Tree Physiology, 27(9): 1243-1252

https://doi.org/10.1093/treephys/27.9.1243
PMid:17545124

 

Khosla C., and Bailey J.E., 1988, Heterologous expression of a bacterial haemoglobin improves the growth properties of recombinant Escherichia coli, Nature, 331(6157): 633-635

https://doi.org/10.1038/331633a0
PMid:3277067

 

Klopfenstein N.B., McNabb H.S., Hart E.R., Hall R.B., Hanna R.D., Heuchelin S.A., Allen K.K., Nian-Qing S., and Thornburg R.W., 1993, Transformation of Populus hybrids to study and improve pest resistance, Silvae Genet, 42(2-3): 86-90

 

Ko J.H., Prassinoe C., and Han K.H., 2006, Developmental and seasonal expression of PtaHB1, a Populus gene encoding a class Ⅲ-Zip protein, is closely associated with secondary growth and inversely correlated with the level of microRNA (miRl66), New Phytologist, 169(3): 469-478

 

Kohler A., Delaruelle C., Martin D., Encelot N., and Martin F., 2003, The poplar root transcriptome: Analysis of 7000 exprssed sequence tags, 542(1-3): 37-41

 

Kovalyova V.A., Gout I.T., Kyamova R.G., Filonenko W., and Gout R.T., 2007, Cloning and analysis of defensin 1 cDNA from Scots pine, Biopolym & Cell, 23(5): 398-404

https://doi.org/10.7124/bc.000779

 

Le Provost G., Paiva J., Pot D., Brach J., and Plomion C., 2003, Seasonal variation in transcript accumulation in wood-forming tissues of maritime pine (Pinus pinaster Ait.) with emphasis on a cell wall glycine-rich protein, Planta, 217(5): 820-830

https://doi.org/10.1007/s00425-003-1051-2
PMid:12768425

 

Leplé J.C., Bonadé-Bottino M., Augustin S., Pilate G., Tân D.L., Delplanque A., Cornu D., and Jouanin L., 1995, Toxicity to hrysomela tremula (Coleoptera: Chrysomelidae) of transgenic poplars expressing a cystein proteinase inhibitor, Molecular Breeding, 1(4): 319-328

https://doi.org/10.1007/BF01248409

 

Le-Yadun S., Wyatt S.E., and Flaishman M.A., 2004, The inflorescence stem fibers of Arabidopsis thaliana Revoluta (ifl1) Journal of Plant Growth Regulation, 23(4): 301-306

https://doi.org/10.1007/BF02637253
https://doi.org/10.1007/s00344-004-0024-4

 

Li L., Cheng X., Lu S., Nakataubo T., Umezawa T., and Chiang V.L., 2005, Clarification of cinnamoyl co-enzyme a reductase catalysis in monolignol biosynthesis of aspen, Plant & Cell Physiology, 46(7): 1073-1082

https://doi.org/10.1093/pcp/pci120
PMid:15870094

 

Liang H., Maynard C.A., Allen R.D., and Powell W.A., 2001, Increased Septoria musiva resistance in transgenic hybrid poplar leaves expressing a wheat oxalate oxidase gene, Plant Molecular Biology, 45(6): 619-629

https://doi.org/10.1023/A:1010631318831
PMid:11430425

 

Lin Y.C., Li W., Chen H., Li Q.Z., Sun Y.H., Shi R., Lin C.Y., Wang J.P., Chen H.C., Chuang L., Qu G.Z., Sederoff R.R. and Chiang V.L., 2014, A simple improved-throughput xylem protoplast system for studying wood formation, Nature Protocols, 9(9): 2194 -2205

https://doi.org/10.1038/nprot.2014.147
PMid:25144270

 

Liu H.T., Zhang C.H., Ma M., and Zheng Y.Q., 2009, Current status and research progress in genetically modified trees and biosafety management, Zhongguo Nongxue Tongbao (Chinese Agricultural Science Bulletin), 25(05): 80-89 (刘海涛, 张川红, 马淼, 郑勇奇, 2009, 中国树木转基因研究进展及其生物安全管理现状, 中国农学通报, 25(05): 80-89

 

Lorenz W.W., and Dean J.F.D., 2002, SAGE profiling and demonstration of differential gene expression along the axial developmental gradient of lignifying xylem in loblolly pine (Pinus taeda), Tree Physiology, 22(5): 301-310

https://doi.org/10.1093/treephys/22.5.301
PMid:11960754

 

Lu Z.H., and Xu J.M., 2005, Current status and development prospects in genetic engineer of forest tree, Redai Nongye (Tropical Forestry), 33(1): 14-17 (陆钊华, 徐建民, 2005, 林木基因工程研究现状与展望, 热带农业, 33(1): 14-17)

 

Mao Z.C., Hu Y.L., Zhong J., Wang L.X., Guo J.Y., and Lin Z.P., 2003, Improvement of the hydroponic growth and waterlogging tolerance of petunias by the introduction of vhb Gene, Acta Botanica Sinica, 45(2): 205-210

 

Martz F., Kiviniemi S., and Palva T.E., 2006, Contribution of omega-3 fatty acid desaturase and 3-ketoacyⅠ-ACP synthaseⅡ (KASI)genes in the modulation of glycerolipid fatty acid composition during cold acclimation in birch leaves, Journal of Experimental Botany, 57(4): 897-909

 

McCarthy R.L., Zhong R.Q., Fowler S., Lyskowski D., Piyasena H., Carleton K., Spicer C., and Ye Z.H., 2010, The poplar MYB transcription factors, PtrMYB3 and PtrMyB20, are involved in the regulation of secondary wall biosynthesis, Plant Cell Physiology, 51(6): 1084-1090

https://doi.org/10.1093/pcp/pcq064
PMid:20427511

 

McCown B.H., McCabe D.E., Russell D., KRobinson D.J., Barton K.A., and Raffa K.F., 1991, Stable transformation of populus and incorportion of pest resistance by electric discharge partible acceleration, Plant Cell Report, 9(10): 590-594

https://doi.org/10.1007/BF00232339
PMid:24220719

 

Mellway R.D., Tran L.T., Prouse M.B., Campbell M.M., and Conetabel C.P., 2009, The wound-, pathogen-, and ultraviolet B-responsive My8734 gene encodes an R2R3 MYB transcription factor that regulates proanthocyanidin synthesis in poplar, Plant Signaling & Behavior, 150(2): 924-941

 

Moyle R., Schrader J., Stenberg A., Olsson O., Saxena S., Sandberg G., and Bhalerao R.P., 2002, Environmental and auxin regulation of wood formation involves members of the Aux/IAA gene family in hybrid aspen, Plant Journal, 31(6): 675-685

https://doi.org/10.1046/j.1365-313X.2002.01386.x
PMid:12220260

 

Park Y.W., Baba K., Furuta Y., Iida I., Sameshima K., Arai M., and Hayashi T., 2004, Enhancement of growth and cellulose accumulation by overexpression of xyloglucanase in poplar, Febs Letters, 564(1-2): 183-187

https://doi.org/10.1016/S0014-5793(04)00346-1

 

Puhakainen T., Li C., Boije-Maim M., Kangasjärvi J., Heino P., and Palva E.T., 2004, Short-day potentiation of low temperature-induced gene expression of a C-repeat-binding factor controlled gene during cold acclimation in silver birch, Plant Physiology, 136(4): 4299-4307

https://doi.org/10.1104/pp.104.047258
PMid:15563624 PMCid:PMC535859

 

Ramandeep, Hwang K.W., Raje M., Kim K.J., Stark B.C., Dikshit K.L., and Webster D.A., 2001, Vitreoscilla hemoglobin intracellular localization and binding to membrane, The Journal of Biological Chemistry, 276(27): 24781-24789

https://doi.org/10.1074/jbc.M009808200
PMid:11331274

 

Riemenschneider D.E., and Haissig B.E., 1991, Producting herbicidetolerant Populus using genetic transformation mediated by Agrobacterium tumefaciens C58: A summary of recent research, In: Ahuja M.R. (Ed.), Woody Plant Biotechnology, Plenum Press, New York, USA, pp.247-263

https://doi.org/10.1007/978-1-4684-7932-4_27

 

Rottmann W.H., Meilan R., Sheppard L.A., Brunner A.M., Skinner J.S., Ma C., Cheng S., Jouanin L., Pilate G., and Strauss S.H., 2000, Diverse effects of over expression of LEAFY and PTLF, a poplar (Populus) homolog of LEAFY/FLORICAULA, in transgenic poplar and Arabidopsis, Plant Journal, 22(3): 235-245

https://doi.org/10.1046/j.1365-313x.2000.00734.x
PMid:10849341

 

Samuga A., and Joshi C.P., 2002, A new cellulose synthase gene (PtrCesA2) from aspen xylem is orthologous to Arabidopsis AtCesA7 (irx3) gene associated with secondary cell wall synthesis, Gene, 296(1): 37-44

https://doi.org/10.1016/S0378-1119(02)00864-8

 

Sartoretto L.M., Barreuto Cid, L.P., and Acm B., 2002, Biolistic transformation of Eucalyptus grandis×E. urophylla Funct, Functional Plant Biology, 29(8): 917-924

https://doi.org/10.1071/PP01153

 

Scorza R., Ravelonandro M., Callahan A.M., Cordts J.M., Fuchs M., Dunez J., and Gonsalves D., 1994, Transgenic plums (Prunus domestica L.) express the plum pox virus coat protein gene, Plant Cell Reports, 14(1): 18-22

https://doi.org/10.1007/BF00233291
PMid:24194220

 

Serrano L., Rochang F., Semblat J.P., Marque C., Teulières C., and Boudet A., 1996, Genetic transformation of Eucalyptus globulus through biolistics: Complementary development of procedures for organogenesis from zygotic embryos and stable transformation of corresponding proliferating tissue, Journal of Experimental Botany, 47(295), 187-215

 

Shani Z., Dekel M, Tsabary G., Goren R., and Shoseyov O., 2004, Growth enhancement of transgenic poplar plants by overexpression of Arabidopsis thaliana endo-1,4–β-glucanase (cel1), Molecular Breeding, 14(3): 321-330

https://doi.org/10.1023/B:MOLB.0000049213.15952.8a

 

Shin D., Podila G.K., Huang Y.H., and Karnosky D.F., 1994, Transgenic larch expressing genes for herbicide and insect resistance, Canadian Journal of Forest Research, 24:(10) 2059-2067

https://doi.org/10.1139/x94-264

 

Sibout R., Baucher M., Gatineau M., Doorsselaere J.V., Mila I., Pollet B., Maba B., Pilate G., Lapierre C., Boedan W., and Jouanin L., 2002, Expression of a poplar cDNA encoding a ferulate-5-hydroxylase/coniferaldehyde 5-hydroxylase increases S lignin deposition in Arabidopsis thaliana, Plant Physiology & Biochemistry, 40(12): 1087-1096

https://doi.org/10.1016/S0981-9428(02)01474-2

 

Sonoda T., Koita H., Nakamoto-Ohta S., Kondo K., Suezaki T., Kato T., Ishizaki Y., Nagai K., lida N., Sato S., Umezawa T., and Hibino T., 2009, Increasing fiber length and growth in transgenic tobacco plants overexpressing a gene encoding the Eucalyptus camaldulensis HD-Zip classⅡ transcription factor, Plant Tissue Culture Letters, 26(1): 115-120

 

Tuskan G.A., DiFazio S.P., Hellsten U., Bohlmann J., Grigoriev I., Hellsten U., Putnam N., Ralph S., Rombauts S., Salamov A., Schein J., Sterck L., Aerts A., Bhalerao R.R., Bhalerao R.P., Blaudez D., Boerjan W., Brun A., Brunner A., Busov V., Campbell M., Carlson J., Chalot M., Chapman J., Chen G.L., Cooper D., Coutinho P.M., Couturier J., Covert S., Cronk Q., Cunningham R., Davis J., Degroeve S., Déjardin A., dePamphilis C., Detter J., Dirks B., Dubchak I., Duplessis S., Ehlting J., Ellis B., Gendler K., Goodstein D., Gribskov M., Grimwood J., Groover A., Gunter L., Hamberger B., Heinze B., Helariutta Y., Henrissat B., Holligan D., Holt R., Huang W., Islam-Faridi N., Jones S., Jones-Rhoades M., Jorgensen R., Joshi C., Kangasjärvi J., Karlsson J., Kelleher C., Kirkpatrick R., Kirst M., Kohler A., Kalluri U., Larimer F., Leebens-Mack J., Leplé JC., Locascio P., Lou Y., Lucas S, Martin F, Montanini B., Napoli C., Nelson DR., Nelson C., Nieminen K.,Nilsson O., Pereda V., Peter G., Philippe R., Pilate G., Poliakov A., Razumovskaya J., Richardson P., Rinaldi C., Ritland K., Rouzé P., Ryaboy D., Schmutz J., Schrader J., Segerman B., Shin H., Siddiqui A., Sterky F., Terry A., Tsai C.J., Uberbacher E., Unneberg P., Vahala J., Wall K., Wessler S., Yang G., Yin T., Douglas C., Marra M., Sandberg G., Van de Peer Y., and Rokhsar D., 2006, The genome of black cottonwood, Populus trichocarpa (Torr. & Gray ex Brayshaw), Science, 313(1596): 1596-1604

https://doi.org/10.1126/science.1128691
PMid:16973872

 

Walter C., and Grace L.J., 2000, Genetic engineering of conifers for plantation forestry—Pinus radiata transformation, In: Jain S.M., and Minocha S.C., (eds.), Molecular Biology of Woody Plants, (2): pp.79-104

https://doi.org/10.1007/978-94-017-2313-8_4

 

Weigel D., Nilsson O., 1995, A developmental switch sufficient for flower initation in diverse plants, Nature, 377(6549): 495-500

https://doi.org/10.1038/377495a0
PMid:7566146

 

Wenck A.R., Quinn M., Whetten R.W., Pullman G., and Sederoff R., 1999, High-frequency Agrobacterium-mediated transformation of Norway spruce (Picea abies) and loblolly pine (Pinus taeda), Plant Molecular Biology, 39(3): 407-416

https://doi.org/10.1023/A:1006126609534
PMid:10092170

 

Yamamoto N., Kano-Murakami Y., Matsuoka M., Ohashi Y., and Tanaka Y., 1988, Nucleotide sequence of a full length cDNA clone of ribulose bisphosphate carboxylase small subunit gene from green dark-grown pine (Pinus thunbergii) seedling, Nucleic Acids Research, 16(24): 11 830

 

Yang C.P., Liu G.F., Liang H.W., and Zhang H., 2001, Study on the transformation of Populus simonii×P. nigra with salt resistance gene Bet-A, Linye Kexue (Scientia Silvae Sinicae), 37(6): 34-38 (杨传平, 刘桂丰, 梁宏伟, 张慧, 2001, 耐盐基因Bet-A转化小黑杨的研究, 林业科学, 37(6): 34-38)

 

Zhang G.P., and Zou X.X., 2007, Progress of search on exogenous DNA introduction in vegetable breeding, Shengwu Jishu Tongbao (Biotechnology Bulletln), 2: 102-107 (张广平, 邹学校, 2007, 外源DNA导入在蔬菜分子育种中的研究进展, 生物技术通报, 2: 102-107)

 

Zhong R., and Ye Z.H., 2004, Amphivasal vascular bundlel 1, a gain-of-Function mutation of the IFLI/REV Gene, is associated with alterations in the polarity of leaves, stems, and carpels, Plant & Cell Physiology, 45(4): 369-385

https://doi.org/10.1093/pcp/pch051
PMid:15111711

 

Zhong R.Q., Lee C., and Ye Z.H., 2010, Functional characterization of poplar wood-associated NAC domain transcription factors, Plant Signaling & Behavior, 152(4): 1044-1055

https://doi.org/10.1104/pp.109.148270

 

Zhou G.Y., Weng J., Gong Z.Z., Zeng Y.S., Yang W.X., Shen W.F., Wang Z.F., Tao Q.Z., Huang J.Q., Qian S.Y., Liu G., Ying M.C., Xue D.Y., Hong A.H., Xu Y.J., Chen S.B., and Duan X.L., 1988, Molecular breeding of agriculture a technique for introducing exogenous DNA into plants after self pollination,Zhongguo Nongye Kexue (Scientia Agricultura Sinica), 2l(3):1-6 (周光宇, 翁坚, 龚蓁蓁, 曾以申, 杨晚霞, 沈蔚芳, 王自芬, 陶全洲, 黄骏麒, 钱思颖, 刘桂铃, 应苗成, 薛达元, 洪爱华, 徐英俊, 陈善葆, 段小岚, 1988, 农业分子育种授粉后外源DNA导入植物的技术, 中国农业科学, 2l(3): 1-6

 

Zou W.H., Zhao Q., Cui D.C., and Wang B., 2006, Transformation of Populus deltoides with Anti-PLDγ gene and chitinase gene, Linye Kexue (Scientia Silvea Sinicea), 42(1): 37-41 (邹维华, 赵强, 崔德才, 王斌, 2006, 反义磷脂酶Dγ基因与几丁质酶基因转化美洲黒杨G2, 林业科学, 42(1): 37-41

    1.625
00096
基因组学与生物技术
• 第 7 卷
阅览选项
. 全文 PDF
. FPDF
. 全文 HTML
. 在线 fPDF
读者评论
. 评论
作者的其他论文
.
卢泳全
相关论文
.
树木
.
生物技术育种
.
转基因育种
.
分子标记辅助育种
.
基因工程
.
遗传转化
服务
. 发表评论